University of California, Berkeley Physics 110A, Section 2, Spring 2003 (*Strovink*)

PROBLEM SET 5

1.

Griffiths Problem 4.28.

2.

In vacuum a large number of nonrelativistic particles, all with the same |charge| e and mass m, are created at the origin. Further, all particles have the same nonzero initial z component of velocity, v_{z0} . Their other initial velocity components vary randomly. The vacuum is filled with a uniform magnetic field $\vec{B} = B_0 \hat{z}$. Show that all particles pass through at least one common coordinate (x, y, z) other than the origin, and find that coordinate.

[This focusing property of solenoidal magnetic fields is widely used to create intense beams of charged particles, particularly muons.]

3.

Griffiths' Ex. 5.2 obtains a cycloid solution for motion in crossed electric and magnetic fields using the Lorentz force law in the laboratory frame. Please read it. Then solve the same problem using a more elegant approach:

Nonrelativistically, if frame S' moves with velocity $\vec{\beta}c$ with respect to (laboratory) frame S, the Galilei transformation for electric fields is

$$\vec{E}' = \vec{E} + \vec{\beta} \times c\vec{B} \ .$$

Taking \vec{B} along \hat{x} and \vec{E} along \hat{z} , as in the problem, and assuming $E \ll cB$ in magnitude, choose the simplest $\vec{\beta}$ so that \vec{E}' vanishes.

(b.)

The two frames coincide at t = 0. Using the Galilei transformation for velocities, if the particle is at rest at t = 0 in frame S, what is its initial velocity in frame S'?

(c.)

The Galilei transformation for magnetic fields is

$$c\vec{B}' = c\vec{B} - \vec{\beta} \times \vec{E}$$
.

Because $E \ll cB$ and $\beta \ll 1$, approximate \vec{B}' to be essentially the same as \vec{B} . In frame \mathcal{S}' , solve

for the motion of the particle.

(d.)

Using the Galilei transformation for positions, determine the motion in the lab frame S.

4

Consider a beam of charged particles with momentum $\vec{p} = p_0 \hat{z}$ and fundamental charge e, incident normally on a "bending magnet". In a region 0 < z < D, the field of this magnet may be approximated to be uniform, $\vec{B} = B_0 \hat{y}$; outside that region, in the path of the beam, it may be approximated to vanish.

Show that a bending magnet imparts a fixed transverse momentum $p_x = p_T$ to every particle, regardless of its initial momentum p_0 , so long as the particle is able to pass through the magnet. For $B_0 = 1$ Tesla and D = 1 meter, what is p_T in GeV/c?

5.

Consider Ampère's law in vacuum, as modified by Maxwell:

$$\nabla \times \frac{\vec{B}}{\mu_0} = \vec{J} + \frac{\partial}{\partial t} \epsilon_0 \vec{E} \ .$$

Taking the divergence of this equation, and applying Gauss's law, prove that electric charge is conserved (Griffiths Eq. 5.29). [Therefore, electric charge conservation is tied fundamentally to the structure of Maxwell's equations; observing the tiniest electric charge nonconservation would completely invalidate the theory.]

6.

A Helmholtz coil consists of two circular coils of radius b, each carrying current I in the same sense. The coils are centered on the z axis, parallel to the z=0 plane, and are located at $z=\pm a/2$.

(a.)

Show that all the odd derivatives

$$\frac{d^n B_z}{dz^n} , n = 1, 3, 5 \dots$$

vanish at the origin.

(b.)

Find a (in terms of b) such that

$$\frac{d^2B_z}{dz^2} = 0$$

at the origin.

(c.)

Helmholtz coils often are used in the lab to cancel out the Earth's magnetic field, or to produce a small region of uniform magnetic field in which experiments may be carried out. Along the z axis, suppose that your experiment requires $B_z=0.01$ T with an error of <0.1% over a distance $\Delta z=0.01$ m. Using an $n\leq 4$ Taylor series expansion, estimate the minimum coil radius b that is needed. Given b, calculate the current I that is required.

7.

Consider two loops of wire, each carrying current I. The first is a circle of radius b in the z=0 plane, centered on the z axis. The second is a square of side 2b, also in the z=0 plane and centered on the z axis.

The magnetic dipole moment \vec{m} of a plane wire loop carrying current I is equal to $I\vec{a}$, where |a| is the loop's area and \hat{a} is the normal to its plane (the ambiguity in \hat{a} is resolved by applying the right-hand rule to the current direction). Far from magnetic dipoles, their magnetic fields drop like r^{-3} (as do electric fields far from electric dipoles).

(a.)

For either of these wire loops, use Ampère's law to show that

$$\int_{-\infty}^{\infty} B_z \, dz = \mu_0 I \; ,$$

where the integral is taken along the z axis.

(b.)

When $z \gg b$, which loop produces the larger

 $|B_z|$? (c.)

When z is not $\gg b$, which loop produces the larger $|B_z|$? (You may perform a calculation or you may provide a cogent argument.)